Exercise 15

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

The line passing through $(-1,-1,-1)$ in the direction of \mathbf{j}

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector, b is the position vector for a point on the line, and t is a parameter. The vector \mathbf{j} can be written as $(0,1,0)$, so the line in question is

$$
\begin{aligned}
\mathbf{y}(t) & =(0,1,0) t+(-1,-1,-1) \\
& =(0, t, 0)+(-1,-1,-1) \\
& =(-1, t-1,-1)
\end{aligned}
$$

Since there's only one arbitrary constant t, the line is one-dimensional. The set of points on the line is described by

$$
\{(-1, t-1,-1), t \in \mathbb{R}\}
$$

